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Abstract

This paper studies the problem of reroute sequence planning for label switched paths (LSPs) in multiprotocol label

switching networks from both the theoretical and practical points of view. This issue arises when the set of LSPs is

recalculated by a central path optimization tool to attain a better resource utilization in the network. In this case a

sequence of LSPs has to be found for their one by one reconfiguration without service interruption, involving the

constraint that the link capacities should not be violated at any time during the rerouting process. The underlying

problem is related to discrepancy theory and it is NP-complete. The conditions of existence of any feasible reroute

sequence are examined, and algorithms are described for solving the problem. Alternative solutions are also presented

for the case when feasible solutions do not exist, finally the performance of these algorithms is investigated by empirical

analysis.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Multiprotocol label switching (MPLS) is a

technology developed for efficient forwarding of

Internet protocol datagrams in core networks.

Traffic flows in MPLS use label switched paths

(LSPs) that are previously established by their

source routers called label edge routers (LERs). In

other words, the ingress-egress points of an LSP

are LERs, while the other MPLS capable rou-
ters––that can only be transit nodes along the

LSPs––are the label switching routers. One of the

important benefits of MPLS is the support of

various traffic engineering features that are very

useful for Internet service providers (ISPs) to
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control the paths of LSPs in their networks, en-

abling an enhanced utilization of network re-

sources, offering quality of service guarantees, and

increasing network reliability [3,4]. MPLS can be

extended by an information distribution compo-

nent related to the bandwidth reservations, so that
LERs can route constraint-based LSPs [13] using

constrained shortest path first routing calculations

for each LSP, i.e., the constrained LSP establish-

ment procedure can be automated. Thus, an LSP

can be routed on a path that differs from the de-

fault path selected by the interior gateway proto-

col, which is useful when the latter path contains

any link whose available bandwidth is less than the
bandwidth required by the given LSP.

In heavily loaded networks successive on-de-

mand LSP establishment and deallocation actions

may result in a set of LSPs where some paths are

not the shortest possible ones, leading to poor re-

source utilization compared to the optimal state.

Thus, global LSP optimization is proposed at

certain time intervals (e.g., daily, weekly) to im-
prove the network performance. A key feature of

MPLS is to support the explicit routing of LSPs,

which enables the ISPs to optimize the LSP

placement globally with a central traffic engineer-

ing tool [14,21]. The calculated new paths should

be routed strictly explicitly, i.e., the whole path of

each LSP is completely determined. To avoid the

interruption of traffic through the LSPs during the
rerouting from the old to the new paths, the re-

routing of an LSP involves the following steps.

First, the new path of the LSP must be established

while the traffic is still carried on the old path, then

the traffic is switched to the new path, finally the

old path is torn down. During this operation

(while changing the old paths to the new ones

according to a sequence) a problem may occur,
namely, some of the LSPs may not be reroutable

to their new paths as there might not be enough

bandwidth on some links of these paths. There-

fore, the reroute sequence should be planned before

the rerouting action, with the result that the re-

routing of the LSPs in the calculated sequence

would be feasible, i.e., would not exceed any

reservable bandwidth threshold. This sequence
planning procedure can be realized as a new

function of the traffic engineering tool that per-

forms the global path optimization. In this paper

the LSP reroute sequence planning (RSP) problem

is investigated from the theoretical and the prac-

tical points of view.

The rest of the paper is organized as follows. In

Section 2 the problem definition is given and pre-
vious work is discussed. Then in Section 3 the

theoretical investigations are summarized. In Sec-

tion 4 several heuristic algorithms are described for

solving the RSP problem. The algorithms are an-

alyzed in various network situations and numeri-

cal results are presented in Section 5. Finally, in

Section 6 the conclusion is drawn.

2. Problem formalization

In this section the RSP problem is described

in detail. After a short outline two equivalent

formulations are given: the first one is a graph

based description, while the other one is a vector

based definition that is used in the theoreti-
cal part. Finally, previous work on RSP is dis-

cussed.

2.1. Outline of the problem

In the RSP problem the MPLS network is given

with LSPs routed on their original (old) paths.

Moreover, the optimized (new) paths of the LSPs
are also known. The new paths are calculated by a

global LSP optimizer (e.g., [14]) located in a cen-

tral place of the network. The task is to reroute the

LSPs from their old paths to their new paths,

specifically, to find a feasible reroute sequence of

the LSPs. The traffic on the LSPs should not be

interrupted, so the new path of each LSP must be

established before its old path is torn down. The
‘‘only’’ constraint is that the maximal reservable

bandwidth of the links must not be exceeded at

any moment of the rerouting process. In this paper

we state two restrictions that make the RSP

problem practically relevant. First, LSPs cannot be

split into several paths. They must be rerouted

entirely in a single step, because the split paths

might result in a highly complex rerouting process.
Moreover, no temporary paths can be used during

the rerouting process, i.e., the LSPs must be
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rerouted directly on their new paths in order to

limit the number of rerouting steps.

2.2. Graph based definition

Now, the RSP problem is defined formally. Let
the directed graph GðV ;EÞ represent the MPLS

network with the n-element set of vertices V and

the m-element set of directed edges E � fðu; vÞ:
u; v 2 V ; ðu 6¼ vÞg corresponding to the nodes and

links, respectively. The set of edges is endowed

with a non-negative edge capacity function

c : E ! Rþ representing the total reservable

bandwidth values of the links. A directed path P
with source node u0 and destination node uw is

defined as a sequence of w edges fe1 ¼ ðu0; u1Þ;
e2 ¼ ðu1; u2Þ; . . . ; ew ¼ ðuw�1; uwÞg. Let the struc-

ture of an LSP be described by li ¼ ðsi;
di; bi; Pi;QiÞ, where Pi and Qi are the old and new

paths, both having source node si, destination

node di, and required transmission bandwidth bi.

In order to define our problem, the k-element set
of LSPs L ¼ fli: 16 i6 kg is given, and the

following notations are introduced: bmax :¼
max16 i6 k bi, and Li represents the reserved ca-

pacities on the edges after the ith rerouting action.

It is assumed that the system of the old paths with

the corresponding capacities is feasible as well as

the system of the new paths, i.e., for each edge the

given edge capacity cðeÞ is not violated by the
paths using that edge: L0ðeÞ ¼

P
i:e2Pi

bi 6 cðeÞ and
LkðeÞ ¼

P
i:e2Qi

bi 6 cðeÞ; 8e 2 E. It is also sup-

posed that Pi 6¼ Qi (16 i6 k) as LSPs with

unchanged paths can be eliminated and the cor-

responding edge capacities can be decreased with

the result that the equivalent problem without

unchanged LSPs is obtained.

The goal in the RSP problem is to determine
a reroute sequence (a permutation) p ¼ fp1;
p2; . . . ; pk: pi 2 f1; 2; . . . ; kg; i 6¼ j ) pi 6¼ pjg of

LSPs that enables the LSP rerouting without ex-

ceeding the capacity constraints, i.e.,
P

i:e2Qpi ;i6 t
bpi þ

P
i:e2Ppi ;i P t bpi 6 cðeÞ; 8e 62 Ppt \ Qpt ; 16 t 6

k, and
P

i:e2Qpi ;i6 t bpi þ
P

i:e2Ppi ;iP t bpi � bpt 6 cðeÞ;
8e 2 Ppt \ Qpt ; 16 t6 k. As one can see, the ca-

pacity constraint expression depends on whether
e 2 Ppt \ Qpt , because the common edges of the old

and new paths of an LSP should not be reserved

twice during the rerouting [2]. To sum up, the first

LSP to be rerouted is lp1 , the ith one is lpi , and the

last one is lpk .

2.3. Vector based definition

The above-defined RSP problem is related to

discrepancy theory [8] in the following way. Let pi

and qi be the incidence vectors––having m ele-

ments––of paths Pi and Qi, respectively (piðeÞ ¼ 1

if e 2 Pi, otherwise piðeÞ ¼ 0). Consequently, the

rerouting of LSP li corresponds to the vector

vi ¼ biqi � bipi where each vector component rep-

resents the net change of capacity reservations.
Therefore, defining the initial vector L0ð6 cÞ rep-
resenting the initial capacity reservations in the

network, and the set of vectors fvi: 16 i6 kg, our
task is to find a permutation p ¼ fp1; p2; . . . ; pkg of
vectors vi so that their partial sums never exceed c
for any vector component, i.e., the edge capacities

are not violated at any point during the rerouting

process. Formally, find a permutation p ¼
fp1; p2; . . . ; pkg of 1; 2; . . . ; k so that

L0ðeÞ þ
Xt

i¼1
vpiðeÞ6 cðeÞ 8e 2 E; 16 t6 k: ð1Þ

One can easily see that this is an equivalent re-

formulation, and we deal with this approach in the

theoretical investigations.

2.4. Previous work on reroute sequence planning

The RSP problem was introduced in [15], in

which four heuristic algorithms were investigated

on real-world backbone networks. Then the

problem was extended to protected traffic flows,

the issue of complexity was discussed and the

heuristics were improved in [16]. It turned out in

both papers that some RSP problem instances
cannot be solved by these simple algorithms

already at moderate (60%) network load (which

means 40% spare capacity on average). These re-

sults serve as a motivation for further investiga-

tions from another point of view, namely,

clarification is needed whether the problem in-

stances had no feasible solutions or the algo-

rithms were not able to find any. For this reason
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theoretical investigations were performed and the

problem instance generation was modified in such

a way that ensures the existence of feasible solu-

tions (see Section 5.1).

3. Theoretical investigations

In [16] it was proven that the RSP problem is

NP-complete even in a ring of two edges. How-

ever, if the free capacities are large enough in the

network, the existence of feasible reroute sequence

can be asserted.
While talking about the theoretical results, for

the sake of simplicity it is assumed that L0 ¼ Lk,

i.e., the initial and the final capacity reservations

are equal (in other words
Pk

i¼1 vi ¼ 0), and they

are denoted by L. This is not an important re-

striction because the results can be transformed to

the general case, but using this assumption the

formulas are significantly simpler.
If the initial capacity vector cðeÞ satisfies

cðeÞP 2LðeÞ for all e 2 E, the rerouting can be

performed in an arbitrary sequence without vio-

lating the edge capacities. The proof is very simple

because expression (1) trivially holds as both path

systems can be inserted simultaneously into the

network while respecting the capacity constraints:Pk
i¼1 bipiðeÞ þ

Pk
i¼1 biqiðeÞ ¼ LðeÞ þ LðeÞ 6 cðeÞ.

However, this bound is quite loose to use it in

practice, because generally there are some edges

whose reserved capacities exceed the half of their

total reservable capacities (e.g., at 60% network

load).

As L is necessary and 2L is trivially enough, we

have to look for a theoretical bound between

them. Although our theoretical investigations re-
sulted in several theorems, understanding them

needs sophisticated mathematical knowledge. The

theorems are presented in Appendix A. To sum-

marize our theoretical results, we found that L is

asymptotically nearer in the sense that a lower

bound � L þ C
ffiffiffi
L

p
for the capacities will be suffi-

cient for the rerouting (where C is a constant de-

pending on the number of edges).
Approximation algorithms were constructed

based on our theorems, but the preliminary test

results showed that they had no practical relevance

as their performances were near to the random

order (RO) (see Section 5.2). They are omitted

from this paper. This result was expected since the

problem instances (see in Section 5.1) were so

‘‘tight’’ that they did not fit the derived capacity
bounds.

4. Algorithms

In this section heuristic algorithms are de-

scribed for solving the RSP problem. These were

introduced in [15], and enhanced in [16]. In our

previous works these algorithms were compared

to the reference algorithm random sorting (RS),

which builds up the reroute sequence by choosing

the LSPs one by one randomly. The candidate
LSPs in this selection are those LSPs that can be

rerouted without violation if there are reroutable

ones, otherwise all actually non-rerouted LSPs are

considered. This means that RS differs from the

completely RO as it selects from the reroutable

LSPs. In the previous works RS was not signifi-

cantly worse than the other heuristics. RO is

therefore investigated in this paper as a second
reference.

4.1. Outline of the algorithms

The base of the heuristic algorithms is an iter-

ation in which one LSP is selected and then rero-

uted. An algorithm finishes when all LSPs have

been selected, therefore the reroute sequence is

built up one by one greedily. The key element

is the selection of the LSP to be actually rerouted.

The heuristic algorithms differ in the selection of
the subsequent LSP. It is a common feature of

these approaches (as of RS) that the selection is

based on reroutable LSPs if there are any, other-

wise such an LSP is selected whose rerouting vio-

lates some of the edge capacities but the violation

is aimed to be kept at a certain minimum. The

algorithms assign a greedy utility value oi to each

candidate LSP li––if li is already rerouted
oi ¼ �1––in each iteration, and the chosen LSP is

the one that has the actually greatest greedy utility
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value. The assignment of the greedy utility value o
for the candidate LSPs is done as follows.

4.2. Minimal violation (MV)

The method MV is the simplest greedy method
(apart from RS). It calculates for each non-rero-

uted LSP li the greatest capacity violation on its

new edges (that are distinct from every old edge) if

it is rerouted: oi ¼ �maxe2QinPi fbi þ RðeÞ � cðeÞg
where RðeÞ is the actual reserved capacity on edge

e. If some edges would be violated in case of re-

routing LSP li, oi < 0, otherwise oi P 0. The idea

behind this ranking is to decrease the minimal free
capacity on the edges in the slightest degree pos-

sible or in case of inevitable capacity excess, ef-

fecting minimal amount of violation on the edge

capacities.

4.3. Maximal freeing (MF)

The approach MF uses a capacity value AðeÞ to
be routed for each edge e, i.e., the summed band-

width of such LSPs that has to be allocated to the

given edge in the subsequent rerouting steps.

Formally, AðeÞ ¼
P

j:e2QjnPj
bj for all j where lj is

not rerouted yet. Here value oi represents the total

amount of capacity that is to be freed on the old

edges of li for the subsequent LSP reroutings:

oi ¼
P

e2PinQi
fAðeÞ � ðcðeÞ � RðeÞÞg. The idea of

this rule is to prefer those LSPs at the selection

which contain edges (in their old paths) that are

present in many new paths of non-rerouted LSPs

and have relatively few actual free capacities.

4.4. The most reroutable (MR)

In this method oi is calculated to represent the
number of LSPs that can be rerouted without ca-

pacity violation after the successful rerouting of

LSP li. Using this approach after selecting an LSP,
in the next step the algorithm can select from the

maximal number of reroutable LSPs. In this case

more than one LSP may have the same greatest

value oi, consequently the utility value is modified

in the following way: the value of oi is decreased by
the summed ratio of the number of non-reroutable

edges and the total number of edges to be rerouted

for all non-rerouted LSPs after li has been rero-

uted. The important benefit of this approach is

that it looks forward one rerouting step. On the

other hand, it has relatively larger computational

complexity compared to the previous algorithms,

thus its application is more time consuming.

4.5. Enhancements

The enhancement of the above-described greedy

methods is based on the following. The normal

RSP problem––rerouting LSPs from paths P to

Q––is equivalent to the reverse problem when we

want to reroute each LSP i from path Qi to Pi, and
the initial and final capacity reservations are in-

verted. The reason for this is the following: if there

is a feasible sequence for the reverse problem, the

reverse sequence is an appropriate solution for the

normal problem and this is true inversely. Now,

three possible improvements of the above-

described greedy algorithms are presented:

(1) The simplest improvement is trying to solve

both normal and reverse problems. First, the

easier problem is considered, which is gener-

ally rerouting from that starting state where

the total free capacity is less––this is typical

in real situations because the goal of path op-

timization is to increase the total free capacity

in the network.
(2) In the second variant of the algorithms the se-

quence is built up from both ends, i.e., LSPs to

be rerouted are selected for the normal and re-

verse problems alternately.

(3) The most complex modification is using back-

tracking in the algorithms. The algorithm

starts and if it gets stuck, i.e., there is no

LSP to be rerouted without capacity viola-
tions, it deletes a part of the latest inserted

LSPs from the sequence (and reroutes the

LSPs to their old paths) and continues with

the reverse problem. If it gets stuck again it

steps back again and changes direction. To

avoid infinite loops: at every back-step phase

fewer LSPs are deleted from the sequence than

the number of LSPs rerouted in the previous
phase. In the current implementation the ratio

of deleted LSPs from the sequence and
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inserted LSPs in the last phase is set to 95%

(that value was determined by a fine-tuning

process).

4.6. Computational complexity

The computational time of the above-described

algorithms consists of two main parts:

• checking whether the particular LSP is rerout-

able, and

• calculation of greedy utility value.

The first check is very simple: the edges of the

new path should be examined to see whether all of

them have enough free capacity. On the other

hand, the complexity of the utility value calcula-

tions of the methods are quite different. While RS

assigns a value in constant time, MV and MF

perform operations ‘‘number of new edges’’ times.

MR is the most complex (since it looks forward
one rerouting step) and all new edges are checked

for all non-rerouted LSPs. The overall computa-

tional time is the time of reroutability check

and utility value calculation multiplied by ðk �
ðk � 1Þ=2Þ � 1, because the base of the number of

candidate LSPs decreases by one in each step. The

order of magnitude of time consumption on our

test networks having several tens of nodes is a few
seconds using MR (on a computer having 450

MHz processor and 1 GByte memory). However,

if the third enhancement is used, the running time

of the algorithms (mostly of MR) can be enormous

theoretically in worst cases, while the first and

second enhancements hardly influence it. At the

current back-step ratio setting (95%) the running

time of MR during the preliminary tests was a few
minutes.

4.7. Alternative solutions

As shown in our previous works on real net-

work situations, it happens that feasible solutions

cannot be found by the above-described algo-

rithm. In these cases there are two possible ap-
proaches: (i) saying that there is no solution and

the LSPs cannot be reconfigured to their new,

improved paths, or (ii) trying to reconfigure LSPs

while allowing some interruption/degradation of

traffic during the rerouting process. Here, the latter

case is followed, i.e., some capacity violations are

allowed in the reroute sequence calculation.

However, these violations appear only in the cal-

culations, and they are eliminated before per-
forming the rerouting action. Several approaches

are possible. Although these approaches are not

applied in this paper, two examples are proposed:

• The interrupting approach allows some LSPs to

be interrupted during the rerouting process, as

follows. First, the reroute sequence is calculated

while allowing some bandwidth thresholds to be
exceeded. Then some LSPs are selected so that

the summed bandwidth values on their old links

cover all the bandwidth excess. After these cal-

culations the selected LSPs are deallocated tem-

porarily. The remaining LSPs are then rerouted

to their new paths in the calculated sequence. Fi-

nally, the previously temporarily deallocated

LSPs are established on their new paths. Note
that in this case the traffic through the tempo-

rarily deallocated LSPs is interrupted during

the rerouting process––this is the price of not vi-

olating any bandwidth threshold––therefore the

number of such LSPs should be kept at a mini-

mum.

• The shrinking approach decreases the reserved

bandwidth of the LSPs during the rerouting pro-
cess, which results in temporary service degrada-

tion but in fortunate cases this amount of

degradation is so small that the network users

do not perceive it. The first step is common with

the above-mentioned approach: the reroute se-

quence is calculated while enabling capacity vio-

lation. Then the bandwidth reservations of LSPs

are decreased so that all violations would be
eliminated. In the simplest case the bandwidth

values are decreased uniformly: the original val-

ues are multiplied by 1=ð1þ xÞ, where x is the

maximal violation (defined and investigated in

Section 5.2). At the final step, after the rerouting

process the bandwidth values are restored.

Note that by feasible solution we mean a solu-
tion that does not have capacity violation. The

rerouting in the calculated sequence can thus be
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performed without any service interruption or

degradation. However, non-feasible solutions

having some capacity violations can also be pos-

sible practical solutions, because in the above-

described ways the rerouting can be performed in

the calculated sequence without real capacity vio-
lations.

5. Numerical results

In order to investigate the algorithms, simu-

lations were performed on a large number of

problem instances. First, the problem instance
generation that guarantees a feasible solution is

described. We then define the metrics that are the

base of the comparison of the algorithms. Finally,

the numerical results of the simulation scenarios

are shown.

5.1. Problem instance generation

To evaluate the performance of the presented

algorithms, a large number of test problem in-

stances are needed. An instance consists of the

graph topology including the edge capacities, and

an initial and a final path set (P and Q, respec-
tively). In our previous work [15,16] investigations

were performed on real network topologies with

realistic input path sets but it was unknown whe-
ther the problem had a feasible solution (i.e., no

capacity violation). For this reason, artificial ex-

amples were generated in the current test scena-

rios, which provably have feasible solutions,

enabling reliable tests from the theoretical point of

view.

The graphs were generated by a random graph

generator described in detail in [14] having three
parameters: the number of nodes n, the average

nodal degree g, and the ratio of LERs l that

represents the ratio of the number of nodes that

can be sources and destinations of paths to the

total number of nodes. LSPs were then generated

(using shortest paths) between each pair of LER

nodes where the integer transmission capacity

value of an LSP was chosen randomly from a
predefined interval ½1; bmax� with one parameter:

bmax. Initially, the edge capacities of the graph

were set exactly to the traffic traversing the edges:

cðeÞ :¼
P

i:e2Pi
bi. At this point, the graph topology

and a shortest path set were constructed and these

paths served as final paths Q representing the

optimized LSPs.

The last step in the problem instance generation
was rerouting some LSPs whose number was

controlled by parameter a. The following cycle

was repeated a times, in which one particular LSP

was rerouted. A predefined number of non-rero-

uted LSPs were selected randomly (in our investi-

gations this number is set to 10). Then for each

selected LSP a new path was sought that was

distinct from its old path (at least in one edge) with
the same source, destination, and capacity, so that

the summed value of capacity violation was as low

as possible. The LSP rerouted was that for which

this value was the smallest. The value was equal to

zero in fortunate cases and otherwise the capacities

of the violated edges were increased in the slightest

degree to eliminate the violations. After this cycle,

for each unchanged LSP li path Pi was the same as
Qi, while for each other LSPs li the changed paths

composed Pi. To sum up, this test example gener-

ation method provided us very ‘‘tight’’ examples––

the capacity was increased in the slightest possible

degree––for which a problem class was defined by

ðn; g; l; bmax; aÞ. On the other hand, this generation

also supplied a feasible reroute sequence that was

the reverse sequence of the selected LSPs in the
above cycle.

5.2. Investigations

In the first test scenario 1000 test instances were

generated belonging to different problem classes.

The parameters were taken randomly from the

following intervals, according to the properties
of real-world backbone networks: n 2 ½10; 50�,
g 2 ½3; 6�, l 2 ½0:5; 1:0�, bmax 2 ½1; 1000�, and a 2
½10; 200�. We tried to solve the examples by all

algorithms detailed in Section 4. For the compar-

ison of the different methods the same four metrics

were used as in [16]:

• success probability: the ratio of the number of
cases without capacity violations to the total

number of examined test instances,
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• maximal violation: the greatest edge violation in

percentage where the edge violation is defined

by the maximal capacity excess during the

rerouting action compared to the total capacity

(corresponding to the maximal reservable band-
width) of the edge,

• edge violation: the ratio of the number of vio-

lated edges to the total number of edges (m), and
• capacity violation: the ratio of the total capacity

violation to the total capacity (
P

e2E cðeÞ) in the

network.

Note that in the following all values of these
metrics are given as percentages.

Consider Table 1, in which the results of the

base algorithms (without enhancements) for each

metric are shown. It is surprising that the success

probability of RO is nearly zero, i.e., it could not

succeed in solving any of the problem instances.

On the other hand, RS––which is a modified ver-

sion of RO––solved more than the half of the in-
stances. It also turned out that MR is significantly

better than the other greedy approaches in terms

of any metric. This result is not surprising because

it looks forward one rerouting step. Methods RS,

MV, and MF gave nearly the same result but

surprisingly RS was the best in terms of success

probability and edge violation. MV was the best

among them in terms of maximal and capacity

violation, and MF was the worst at all. However,

it is important to note that these results depend on

the instance generation to a great extent and in

another context the algorithms might perform

differently.
In the second test session the efficiencies of the

different enhancements of the greedy methods were

investigated. Table 2 shows the success probabili-

ties of the different enhanced heuristic algorithms.

Some combinations of the enhancements are also

included, which means that both enhancements

were applied to the problem instances. However, it

was unnecessary to combine the first and third
enhancements because the first one cannot solve

the problem if the third one cannot solve it, due to

the fact that the third enhancement is an extension

of the first one. The second enhancement gave

worse results than the others because for these

‘‘tight’’ examples it was much better to build up

the reroute sequence by solving the easier problem

out of the normal and reverse ones. The third
enhancement improved the probability of success

significantly, and there were only a few test in-

stances that could be solved by the second en-

hancement but not by the third one (compare

columns �3� and �2+ 3�).
In the following investigations the relation be-

tween the complexity of the problem and the dif-

ferent parameters of the problem classes was
examined. It was assumed that the networks were

given, thus n, g, and l were fixed in a real situation.
Table 1

Results of the base algorithms

Algorithm Success

probability

Maximal

violation

Edge

violation

Capacity

violation

RO 0.1 38.29 27.23 1.7224

RS 55.0 3.95 1.12 0.0419

MV 51.6 1.72 1.34 0.0239

MF 50.4 5.93 1.53 0.0572

MR 81.8 1.50 0.37 0.0044

Table 2

Success probability results at different enhancements

Algo-

rithm

Enhancement

1 2 3 1+ 2 2+ 3

RS 55.0 22.2 76.4 59.0 77.3

MV 51.6 19.7 63.4 53.3 63.5

MF 50.4 26.2 71.1 55.0 71.4

MR 81.8 75.7 92.1 88.3 92.6
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Fig. 1. Success probability results for different bmax values.
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Therefore, the problem at different bmax and a
values was investigated, while the other parame-

ters were taken from the above-mentioned inter-

vals. First, the parameter bmax was examined. The
same input was generated as in the first test sce-

nario except for the maximal bandwidth value of

the LSPs (bmax), which was fixed to 1, 10, 100, and

1000, respectively. In Fig. 1 one can see that bmax

influenced the results to a great extent, and the

uniform 1 bandwidth value was not the easiest case

for all methods but their success probability curves

had a maximum value. However, we can say that

over a particular bmax value the problem is harder

to solve as the maximal bandwidth values were

increased.

The relation between the number of LSPs to be
rerouted a and the complexity of the problem can

be seen clearly in Fig. 2. The success probability

was in inverse proportion to a as expected. It also

turned out that if a was increased, the probability

of finding a feasible reroute sequence converged to

a particular value that depended on the algorithm

used.

6. Conclusion

This paper has addressed the investigation of

the RSP problem from theoretical as well as

practical points of view. Several bounds have been

introduced that guarantee the existence of a fea-

sible solution for the RSP problem. However,

these bounds were proven to be so weak that we

may say that the discrepancy theory based ap-

proximation algorithms have no practical rele-

vance. Greedy heuristic algorithms have been

investigated by empirical analysis on artificially

generated ‘‘tight’’ examples that have provably
feasible solutions. Every heuristic found feasible

solutions in more than half of the cases, moreover

the success probability of the third enhancement of

MR was over 90%. Consequently, it is probable

that some realistic problem instances in our

previous works have no feasible solutions, and

two alternative solutions––the interrupting and

shrinking approaches––were introduced for these
cases.

In summary, we propose to use the third en-

hancement of algorithm MR in practice. Further-

more, when the problem cannot be solved without

violations, we suggest to recalculate the sequence

by the MV algorithm and allow temporary inter-

ruption or degradation of some LSPs during the

rerouting process using one of the presented al-
ternative solutions.

Our future research aims at improving the

success probability of RSP by using temporary

and split paths, combining the path optimization

with the RSP procedure, finally trying other gen-

eral meta-heuristics (e.g., tabu search, simulated

annealing).
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Appendix A. Theoretical results

In this section our theoretical results on RSP

are presented. The connection to discrepancy the-

ory is discussed and criteria for the existence of

feasible solutions are presented. Finally, an inter-
esting result is shown concerning the applicability

of random reroute sequence.
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Close relatives of the RSP combinatorial

problem have been studied in the mathematical

literature. In discrepancy theory and in the theory

of scheduling and sequencing there are also a lot of

related questions but we have to emphasize our

special interest in the algorithmic results and ap-
proaches. Now, three problems are presented to

explore some of the related ones. Let s be a norm
on Rm.

The s-discrepancy of a vector-set Z ¼
fz1; z2; . . . ; zkg � Rm is defined to be

discsðZÞ ¼ min
e2f�1;þ1gk

Xk

i¼1
eizi

�����
�����

s

; ðA:1Þ

i.e., the problem is to divide the vector-set into two

parts as equally as possible.
The notion of compact vector summation (CVS)

is very similar to the vector formulation of RSP. In

CVS the task is to compute an order of the ele-

ments of a zero-sum vector-set, so that all partial

sums are small in the sum of this order. If

Z ¼ fz1; z2; . . . ; zkg � Rm,
Pk

i¼1 zi ¼ 0 (called zero-

sum vector-set) then define

usðZÞ ¼ min
p

max
16 t6 k

Xt

i¼1
zpi

�����
�����

s

; ðA:2Þ

where the minimum is taken over all permutations
p of 1; 2; . . . ; k. The function

usðkÞ ¼ sup usðZÞ: Z
(

¼ fz1; z2; . . . zkg;

ziks

�� 6 1;
Xk

i¼1
zi ¼ 0; k 2 N

)

is known as the Steinitz-function [5,6,10,11,18–20].

Finally, the dynamic s-discrepancy of Z ¼
fz1; z2; . . . ; zkg � Rm is defined by

lsðZÞ ¼ min
e2f�1;þ1gk

max
16 t6 k

Xt

i¼1
eizi

�����
�����

s

: ðA:3Þ

The combinatorial optimization problems of

computing the above functions (A.1)–(A.3) are

NP-hard for several norms (e.g., for s ¼ ‘1 con-

cerning the maximal violation that is defined in
Section 5.2). The main difference between RSP and

CVS using an ‘1-like norm is that in the RSP we

are interested only in the upper bound of the

summing trajectory coordinate functions. Since

the symmetrically bounded CVS problem is easier

to examine, this problem is investigated instead of

the one-side bounded RSP problem. To see the

connection between the above presented prob-
lems and functions consider the following propo-

sition.

Proposition A.1. Let Z ¼ fz1; z2; . . . ; zkg � Rm withPk
i¼1 zi ¼ 0. Then

usðZÞ6 max
p

lsðfzp1 ; zp2 ; . . . ; zpkgÞ; ðA:4Þ

where the maximum in the right-hand side is taken
over all permutations p of 1; 2; . . . ; k.

The inequality (A.4) is known as Chobanyan�s
transference lemma [8]. This is the most powerfully

applicable tool to the RSP. Examining these dis-

crepancy-related questions, our results are trans-
formed for the RSP problem. Recall the

assumption L0 ¼ Lk ¼ L.
Although the efficiency of the approximation

algorithms is usually measured in approximation

factor, here an additive approach is more appro-

priate. Applying Grinberg�s and Sevastyanov�s
CVS theorem [6,10,12], one can derive the fol-

lowing.

Theorem A.2. Given a capacity function satisfying
cðeÞP LðeÞ þ m � bmax for all e 2 E, a feasible re-
route sequence can be computed in deterministic
polynomial time by Grinberg’s and Sevastyanov’s
algorithm [10].

As it can be seen, this bound depends only on
the number of edges and on the maximal trans-

mission capacity. The disadvantage of this method

is that it works well only when the capacity res-

ervation LðeÞ is significantly higher than the max-

imal transmission capacity multiplied by the

number of edges, which is rather atypical in

practice. This is why we look for other approaches.

Chobanyan�s lemma established the relation be-
tween the CVS and the dynamic discrepancy

problem, and implied Proposition A.1. Based on

this, it looks to be useful to apply Spencer�s cosine
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hyperbolic algorithm [19] to give an approximate

solution to the dynamic discrepancy problem, in-

ducing the following approximate RSP solution.

Theorem A.3. Provided that the capacity function
satisfies

cðeÞP LðeÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k lnð2mÞ

p
� bmax þ eLðeÞ 8e 2 E;

ðA:5Þ
a feasible reroute sequence exists, and it can be
computed in Oðkm logðe�1ÞÞ time, where ln is the
natural logarithm.

Considering the practical properties of real

networks, it can be supposed that mP n. We fur-

ther assume that the number of LSPs given be-

tween each node pair is upper bounded by a
constant C. Then k6Cðn2Þ6Cðm2=2Þ. Using only

these bounds, apart from the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2mÞ

p
and con-

stant factors, the bound is the same as in Theorem

A.2. If m � n or k � Cðn2Þ, the last result is better.
The other theoretical results are obtained by the

simple application of the probabilistic method.
Furthermore, due to a martingale based method of
pessimistic estimators [17], the probabilistic argu-
ment gives rise to a deterministic algorithm.

Theorem A.4. If the capacity function satisfies

cðeÞPLðeÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Xk

i¼1
viðeÞ2 lnð2mÞ

vuut þ eLðeÞ 8e 2 E;

ðA:6Þ
a feasible reroute sequence exists, and it can be
computed in Oðkm logðe�1ÞÞ time.

The above result is particularly interesting for

uniform and unit bandwidth values. We therefore

set bi ¼ 1, 16 i6 k. Denoting by T ðeÞ the number
of LSPs for which exactly one of their paths Pi and

Qi contains the edge e (in other words the number

of LSPs to be rerouted from/to edge e),
T ðeÞ6 L0ðeÞ þ LkðeÞ ¼ 2LðeÞ. Thus, the capacity

function

cðeÞP LðeÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðeÞ lnð2mÞ

p
¼ LðeÞ 1

 
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2mÞ
LðeÞ

s !
8e 2 E; ðA:7Þ

satisfies (A.6). Consider now a fixed edge e. We

emphasize that the needed relative additional ca-

pacity for the rerouting action tends to zero when

LðeÞ tends to infinity if m is fixed. Moreover, if

LðeÞ � ln n, then lnð2mÞ=LðeÞ6 2 ln n=LðeÞ, which
tends to zero as well. In other words, in this case,

the RSP with unit bandwidth values admits an

asymptotically optimal algorithm.

On the other hand, to mention a negative result:

path-systems can be derived from Hadamard
matrices [8] for which K 6 LðeÞ6 2K, and

max16 t6 k fLðeÞ þ
Pt

i¼1 vpiðeÞgP LðeÞ þ C
ffiffiffiffi
K

p
for

every permutation p, for some constant C.
The above theorem can be improved trivially by

the Lov�aasz local lemma [9] but we do not know any

algorithm. Suppose that the length of every path is

at most D. Then the matrix M ¼ ðv1; v2; . . . ; vkÞ
(composed by the vectors vi as its columns) has at

most 2D non-zero entries in each column. Thus,

the following theorem is obtained, which heavily

exploits the row-, and the column-sparsity. It is
still a challenge to derandomize it, and to see

whether the classical derandomizations work or

not [1,7].

Theorem A.5. If expression

cðeÞP LðeÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Xk

i¼1
viðeÞ2 lnð16DT ðeÞÞ

vuut 8e 2 E;

ðA:8Þ

holds, then there is a feasible solution for the RSP.

In real networks, LSPs are usually short, i.e.,

traverse as few routers as possible. This approach

may therefore be of practical interest and is worth

exploring further.

Greedy heuristic algorithms were also devel-

oped. They build up the reroute sequence by

choosing an LSP in each step while minimizing

different weight functions. The study of random
permutation shows that the application of these

heuristics is not illegitimate and we also emphasize

that the exponential weight function version of

these heuristic algorithms can be seen as the de-

randomization of the random permutation. The
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following theorem explains this statement more

precisely.

Theorem A.6. If expression

cðeÞPLðeÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T ðeÞ ln T ðeÞm

1� h

� �s
� bmaxðeÞ 8e 2 E;

ðA:9Þ
holds, the random reroute sequence does not violate
the capacities with greater probability than h.
Especially, if cðeÞP LðeÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T ðeÞ lnðT ðeÞmÞ

p
�

bmaxðeÞ; 8e 2 E, there exists a solution for the RSP
problem (where bmaxðeÞ denotes the maximal LSP
bandwidth on edge e).
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